Experience Next-Level Hydration with Vancouvers IV Therapy Bars

Intravenally

Customizing Your IV Therapy: Tailored Solutions for Maximum Hydration


Ah, the bustling city of Vancouver – with its rain-kissed streets and the perpetual hustle, its no wonder that city dwellers are often in search of ways to rejuvenate and rehydrate. Read more about Revitalizing IV vitamin therapy in Vancouver here. Enter the concept of IV therapy bars, a trend thats been gaining traction among those who seek to experience next-level hydration.


Now, you might be thinking, "IV therapy at a bar, really?"

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Hep lock

  1. Fluid therapy
  2. Intravenous fluid
  3. IV bag
  4. IV drip
  5. IV therapies
  6. Intra-venous route
  7. Intravenous cannulation
  8. Intravenous buffer
  9. Intra-venous therapy
  10. Saline drips
  11. IV infusion
  12. Injection into a vein
  13. Intravenous buffer solution
  14. IV fluid
  15. Intra-venous administration
  16. Intra-venous
  17. Blown vein
  18. Intravenous Administration
But hear me out!

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Intravenous fluids

  1. Intravenous Administration
  2. Intravenous line
  3. Hep-lock
  4. Intravenally
  5. Hep lock
  6. Parenteral fluid replacement
  7. Heplock
  8. Intravenals
  9. Iv colloid
  10. Intravenous injections
  11. Intravenous lines
  12. Intravenous infusions
  13. Intravenuous
  14. Intravenous drips
  15. IV therapy
  16. Inrtavenous
  17. Intravenous infusion
  18. Continuous infusion
This isnt your usual bar scene. Its a place where wellness meets innovation, and where your hydration needs are not just met, but tailored specifically to you.

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Intra-venous fluid

  • Intravenous fluids
  • Inrtavenous
  • IV infusion
  • Intravenous fluids
  • Inrtavenous
  • IV infusion
  • Intravenous fluids
  • Inrtavenous
  • IV infusion
  • Intravenous fluids
  • Inrtavenous
  • IV infusion
  • Intravenous fluids
  • Inrtavenous
  • IV infusion
  • Intravenous fluids
  • Inrtavenous
  • IV infusion
  • Intravenous fluids
IV bag Thats right, customizing your IV therapy is the game-changer you didnt know you needed.


Imagine walking into a tranquil space, greeted by the soothing ambiance and the promise of revitalization. The professionals at these bars, theyre not your average bartenders. Theyre trained to concoct a hydration solution thats just for you. (And, of course, were not talking cocktails and spirits here – unless were referring to the spirit of wellness!)


So how does it work? Its simple, yet fascinating. First off, they chat with you about your lifestyle, your health goals, and any concerns you may have. The Drip Feeling a bit under the weather? Theres an IV drip for that. Training for the Sun Run and need a boost? Theyve got you covered. Struggling with the aftereffects of last nights actual bar crawl? Well, theyve got something for that too!


The beauty of it all is that no two drips are the same – they cant be, because no two people are the same. Your bodys needs are unique, and so should be the way you address them.

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Intravenous fluids

  1. Intravenous infusion
  2. Continuous infusion
  3. Intravenous infusion and defusion
  4. Intravenous route
  5. Intra-venous injection
  6. IVs
  7. Intraveneous
  8. IV administration
  9. IV fluids
  10. Intravenous drip
  11. IV injection
  12. IV tube
  13. IV-push
  14. Intravenously
  15. IV line
  16. IV push
  17. Intravenous
  18. Fluid therapy
Its not just about pumping fluids into your system; its about whats in those fluids. Vitamins, minerals, electrolytes, and antioxidants can be mixed into your very own hydration cocktail. Its like having a nutritionist and a nurse team up just for your well-being.


And lets be real, we could all use a little extra help staying hydrated.

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Intravenous medication

  1. Intravenous fluid
  2. IV bag
  3. IV drip
  4. IV therapies
  5. Intra-venous route
  6. Intravenous cannulation
  7. Intravenous buffer
  8. Intra-venous therapy
  9. Saline drips
  10. IV infusion
  11. Injection into a vein
  12. Intravenous buffer solution
  13. IV fluid
  14. Intra-venous administration
  15. Intra-venous
  16. Blown vein
With our busy lives, its easy to forget to drink enough water, and before we know it, were walking around dehydrated – which is not fun, by the way!


But, does it really work, you ask? Well, the proof is often in the pudding (or the IV bag, in this case). People whove tried it swear by the immediate feeling of refreshment and energy. Intravenal And it makes sense, doesnt it? IV infusion When you give your body what it lacks, directly into your bloodstream, the results can be quite impressive!


Now, I must add, while the idea of personalized IV therapy sounds miraculous, its not a one-stop cure for all that ails you. Its a supplement to a healthy lifestyle, not a replacement. And its definitely not for everyone – always consult with a healthcare professional before you dive into something like this, okay?


So, there you have it, the lowdown on Vancouvers IV therapy bars (and a couple of grammar slip-ups for good measure). Its a place where you can say goodbye to cookie-cutter hydration methods and hello to a bespoke experience that caters to your bodys whims! Whether youre a skeptic or a believer, one things for certain – its an intriguing concept thats making waves in the city.

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Inrtavenous

  1. IV bag
  2. IV drip
  3. IV therapies
  4. Intra-venous route
  5. Intravenous cannulation
  6. Intravenous buffer
  7. Intra-venous therapy
  8. Saline drips
  9. IV infusion
  10. Injection into a vein
  11. Intravenous buffer solution
  12. IV fluid
  13. Intra-venous administration
  14. Intra-venous
  15. Blown vein
  16. Intravenous Administration
  17. Intravenous line
  18. Hep-lock
  19. Intravenally
And who knows, maybe its just the thing

The Science Behind IV Therapy: How It Works and Its Benefits


Experience the allure of next-level hydration through Vancouvers trending IV therapy bars, where science meets wellness in an innovative fusion!

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Intravenous fluids

  1. IV infusion
  2. IV infusion
  3. IV infusion
  4. IV infusion
  5. IV infusion
  6. IV infusion
  7. IV infusion
  8. IV infusion
  9. IV infusion
  10. IV infusion
  11. IV infusion
  12. IV infusion
  13. IV infusion
  14. IV infusion
  15. IV infusion
  16. IV infusion
  17. IV infusion
  18. IV infusion
  19. IV infusion
  20. IV infusion
Ever pondered how a simple IV drip can revitalize your whole being? Well, let me give you a scoop on the science that powers this modern-day elixir.


IV therapy, short for intravenous therapy, aint your average health fad. Its a method used by medical professionals for decades (youve seen it in hospitals, right?), yet now its been given a wellness twist. The crux of the matter lies in the delivery system; nutrients and hydration bypass the digestive tract, making a beeline straight into your bloodstream. Thats efficiency at its finest, folks!


Now, whys that so significant, you ask?

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Intravenally

  • Inrtavenous
  • Intravenous infusion
  • Continuous infusion
  • Intravenous infusion and defusion
  • Intravenous route
  • Intra-venous injection
  • IVs
  • Intraveneous
  • IV administration
  • IV fluids
  • Intravenous drip
  • IV injection
  • IV tube
  • IV-push
  • Intravenously
  • IV line
  • IV push
  • Intravenous
Think about it – when you ingest vitamins orally, they have to wrestle through the digestive process, and, lets be real, not all of it makes it to the finish line. With IV therapy, the absorption rate is close to 100%! Youre getting maximum benefit with minimal waste, and thats something to write home about.


The concoction infused into your veins is tailored to your needs, a bespoke blend of vitamins, minerals, and fluids thats as unique as your fingerprint. Dehydration, a common nemesis especially after a night out or a strenuous workout, stands no chance. Your cells drink up this hydration like its a desert oasis, reinvigorating you from the inside out.


And its not just about the hydration; the benefits are a laundry list of wellness dreams. Boosted energy, enhanced immune support, and even a brighter complexion – the perks are as diverse as the clientele that swears by it. Its no wonder Vancouverites are lining up to get their fix.


But, lets not get carried away (Oops, theres that exclamation mark!).

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Intravenal

  1. Intravenous infusion and defusion
  2. Intravenous route
  3. Intra-venous injection
  4. IVs
  5. Intraveneous
  6. IV administration
  7. IV fluids
  8. Intravenous drip
  9. IV injection
  10. IV tube
  11. IV-push
  12. Intravenously
  13. IV line
  14. IV push
  15. Intravenous
  16. Fluid therapy
  17. Intravenous fluid
Its important to remember that IV therapy isnt a cure-all. Its a complement to a healthy lifestyle, not a substitute for one. And, as with anything involving needles and your veins, its crucial to seek out reputable therapy bars with qualified professionals. Safety first, am I right?


So, whether youre a skeptic or a believer, the science behind IV therapy is quite compelling. Its a potent tool in your wellness arsenal, and in a city like Vancouver, where active lifestyles reign supreme, its no surprise that IV therapy bars have become a hydration haven.


Just remember, while its tempting to think of IV therapy as a magic bullet, its really about balance. Hydration is key, but its not the sole player in the game of health. Eat well, sleep well, and maybe, just maybe, let a little science give you that extra edge. After all, in the hustle of city life, a little boost can go a long way (And thats the truth!).

Real People, Real Results: Testimonials from Vancouvers IV Therapy Clients


When you hear the buzz about IV therapy bars in Vancouver, you might be skeptical at first-I know I was. But lets dive into the real deal; were talking about real people whove seen real results! Intravenous fluids Its not just a fad, folks-its a game-changer for hydration and wellness.


Now, imagine youre feeling run-down (happens to the best of us, right?). Youve tried water, vitamins, sleep, but nothings giving you that kick you need.

Experience Next-Level Hydration with Vancouvers IV Therapy Bars - Saline drip

  • Hep lock
  • Parenteral fluid replacement
  • Heplock
  • Intravenals
  • Iv colloid
  • Intravenous injections
  • Heparin lock
  • Iv therapy
  • Intravenous bolus
  • The Drip
  • Intravenous fluids
  • Intravenal
  • Intravenous injection
  • Intravenous therapies
  • Intravenous administration
  • Intravenous lines
  • Intravenous infusions
  • Intravenuous
  • Intravenous drips
  • IV therapy
Enter IV therapy bars! Theyre popping up all over Vancouver, promising next-level hydration, and let me tell you, theyre not just blowing smoke.


Take Sarah, for instance; shes a marathon runner who used to struggle with recovery. "I was skeptical, no lie," she admits. But after her first IV therapy session, she was like, "Wow, this is the real deal!" The blend of electrolytes, vitamins, and minerals had her back on the trails faster than ever before. She couldnt believe the difference it made. And thats just one story!


Then theres Michael, a busy software developer who just couldnt shake off the midday slump (coffee was his best friend, or so he thought). Intra-venous fluid He figured, why not give IV therapy a shot? And guess what? It worked wonders! He said it was like a cloud was lifted from his mind, and he powered through his work like never before. "Its like Ive found this secret weapon for my productivity," he told me, and hey, who doesnt want one of those?


Ah, but lets not forget about Emma. Shes a nurse, and her shifts are nothing short of grueling. She used to be constantly dehydrated, no matter how much water she drank. Then, on a friends recommendation (and with a healthy dose of doubt), she tried IV therapy. The result? She felt rejuvenated-like she could tackle a double shift with her hands tied behind her back (not that shed want to, of course)!


Now, I aint saying its a miracle cure or anything-Im not about selling snake oil. But you cant argue with the experiences these Vancouverites are raving about. Its not every day you come across something that genuinely changes the game for people from all walks of life.


So, whats the verdict? If youre looking for that extra edge in hydration and wellness, maybe its time to consider what these IV therapy bars have to offer. With tailored cocktails to suit your needs-detox, energy, immunity boost, you name it-its clear why the testimonials are pouring in.


Its not about jumping on the latest trend; its about listening to your body and giving it what it needs. Intravenous bolus And who knows-maybe youll be the next to join the chorus of "Real People, Real Results" singing the praises of Vancouvers IV therapy bars! Just remember, results may vary, but its definitely worth a shot (pun intended!). Keep an open mind and who knows, you might just be pleasantly surprised!

Beyond Hydration: Exploring the Additional Health Boosts of IV Therapy


In the bustling city of Vancouver, where the pace of life can sometimes leave us feeling a bit drained (to say the least!), theres a growing trend thats catching the eyes – and veins – of health enthusiasts: IV therapy bars. These trendy spots offer something beyond the usual hydration one might expect; theyre a gateway to an array of health boosts that go far beyond just quenching thirst.


Now, you might be thinking, "Isnt this just for folks whove partied too hard or athletes looking to recover?" But heres the thing, its not! IV therapy is for anyone in need of a pick-me-up, and the benefits are, well, pretty darn impressive.


First off, lets talk about the sheer convenience of it all. In a city where time is as precious as a sunny day in November, whos got the time to sit around sipping water all day? IV therapy bars offer a quick fix to dehydration, sure, but they offer so much more. You can get your vitamins, minerals, and even medications directly into your bloodstream! Its like a fast-track ticket for your bodys needs.


But wait, theres more (and Im not just saying that to sound like a TV commercial)! Intravenous fluids These IV concoctions can also help with things like boosting your immune system – which, lets face it, we could all use, especially when flu season hits and everyone around you starts sniffing. And for those who suffer from chronic conditions, such as migraines or fibromyalgia, IV therapy can provide relief when other treatments dont seem to cut it.


Now, it aint all sunshine and roses; some folks raise an eyebrow at the thought of getting poked with a needle for something you could, in theory, get from a good diet and proper hydration. But heres where the negation comes into play – not everyone can. Whether its due to a hectic lifestyle that doesnt allow for the best eating habits, or a body thats a bit finicky with absorbing nutrients, IV therapy offers a solution thats hard to argue with.


Oh, and lets not forget the energy boost! People swear by the revitalizing effects of these IV treatments. Imagine walking in feeling like a wilted flower and walking out ready to take on the world – its that dramatic!


Intravenally

So, while its clear that staying hydrated is crucial (weve all had that lecture, thanks), these IV therapy bars in Vancouver are offering a level of hydration thats just... more. Its like hydration with a turbocharger. And while it may not be everyones cup of tea (or bag of saline, in this case), its certainly making waves in the wellness world.


In conclusion, while some might dismiss IV therapy as a mere trend, those whove experienced its benefits know its not just about getting fluids. Its a health experience that can leave you feeling rejuvenated, refreshed, and ready to tackle whatever the rainy city throws your way! With the added convenience and potential health perks, its no wonder people are saying cheers to IVs instead of smoothies. And hey, if it gives you that extra oomph to enjoy the stunning nature around Vancouver, I say – why not give it a shot (literally)!

Mobile IV Drip Therapy Vancouver

As of 2016, the Port of Vancouver is the fourth-largest port by tonnage in the Americas, the busiest and largest in Canada, and the most diversified port in North America. While forestry remains its largest industry, Vancouver is well known as an urban centre surrounded by nature, making tourism its second-largest industry. Major film production studios in Vancouver and nearby Burnaby have turned Greater Vancouver and nearby areas into one of the largest film production centres in North America, earning it the nickname "Hollywood North".

Citations and other links

 

 

Intravenous therapy
Photo of a person being administered fluid through an intravenous line or cannula in the arm
A person receiving a medication through an intravenous line (cannula)
Other names IV therapy, iv therapy
ICD-9-CM 38.93
MeSH D007262

Intravenous therapy (abbreviated as IV therapy) is a medical technique that administers fluids, medications and nutrients directly into a person's vein. The intravenous route of administration is commonly used for rehydration or to provide nutrients for those who cannot, or will not—due to reduced mental states or otherwise—consume food or water by mouth. It may also be used to administer medications or other medical therapy such as blood products or electrolytes to correct electrolyte imbalances. Attempts at providing intravenous therapy have been recorded as early as the 1400s, but the practice did not become widespread until the 1900s after the development of techniques for safe, effective use.

The intravenous route is the fastest way to deliver medications and fluid replacement throughout the body as they are introduced directly into the circulatory system and thus quickly distributed. For this reason, the intravenous route of administration is also used for the consumption of some recreational drugs. Many therapies are administered as a "bolus" or one-time dose, but they may also be administered as an extended infusion or drip. The act of administering a therapy intravenously, or placing an intravenous line ("IV line") for later use, is a procedure which should only be performed by a skilled professional. The most basic intravenous access consists of a needle piercing the skin and entering a vein which is connected to a syringe or to external tubing. This is used to administer the desired therapy. In cases where a patient is likely to receive many such interventions in a short period (with consequent risk of trauma to the vein), normal practice is to insert a cannula which leaves one end in the vein, and subsequent therapies can be administered easily through tubing at the other end. In some cases, multiple medications or therapies are administered through the same IV line.

IV lines are classified as "central lines" if they end in a large vein close to the heart, or as "peripheral lines" if their output is to a small vein in the periphery, such as the arm. An IV line can be threaded through a peripheral vein to end near the heart, which is termed a "peripherally inserted central catheter" or PICC line. If a person is likely to need long-term intravenous therapy, a medical port may be implanted to enable easier repeated access to the vein without having to pierce the vein repeatedly. A catheter can also be inserted into a central vein through the chest, which is known as a tunneled line. The specific type of catheter used and site of insertion are affected by the desired substance to be administered and the health of the veins in the desired site of insertion.

Placement of an IV line may cause pain, as it necessarily involves piercing the skin. Infections and inflammation (termed phlebitis) are also both common side effects of an IV line. Phlebitis may be more likely if the same vein is used repeatedly for intravenous access, and can eventually develop into a hard cord which is unsuitable for IV access. The unintentional administration of a therapy outside a vein, termed extravasation or infiltration, may cause other side effects.

Uses

[edit]

Medical uses

[edit]
Photograph of an intravenous line inserted in the wrist.
Photograph of two intravenous solution bags hanging from a pole.
Left: A person receiving fluids through an intravenous line in the wrist. Right: IV bags on a pole connected to IV lines.

Intravenous (IV) access is used to administer medications and fluid replacement which must be distributed throughout the body, especially when rapid distribution is desired. Another use of IV administration is the avoidance of first-pass metabolism in the liver. Substances that may be infused intravenously include volume expanders, blood-based products, blood substitutes, medications and nutrition.

Fluid solutions

[edit]

Fluids may be administered as part of "volume expansion", or fluid replacement, through the intravenous route. Volume expansion consists of the administration of fluid-based solutions or suspensions designed to target specific areas of the body which need more water. There are two main types of volume expander: crystalloids and colloids. Crystalloids are aqueous solutions of mineral salts or other water-soluble molecules. Colloids contain larger insoluble molecules, such as gelatin. Blood itself is considered a colloid.[1]

The most commonly used crystalloid fluid is normal saline, a solution of sodium chloride at 0.9% concentration, which is isotonic with blood. Lactated Ringer's (also known as Ringer's lactate) and the closely related Ringer's acetate, are mildly hypotonic solutions often used in those who have significant burns. Colloids preserve a high colloid osmotic pressure in the blood, while, on the other hand, this parameter is decreased by crystalloids due to hemodilution.[2] Crystalloids generally are much cheaper than colloids.[2]

Buffer solutions which are used to correct acidosis or alkalosis are also administered through intravenous access. Lactated Ringer's solution used as a fluid expander or base solution to which medications are added also has some buffering effect. Another solution administered intravenously as a buffering solution is sodium bicarbonate.[3]

Medication and treatment

[edit]
Photograph of two intravenous solution bags (containing glucose and levofloxacin, respectively) and a paper log sheet hanging from a pole
Saline and 5% dextrose solution (left), levofloxacin 750mg (right), and log sheet hanging from an IV pole

Medications may be mixed into the fluids mentioned above, commonly normal saline, or dextrose solutions.[4] Compared with other routes of administration, such as oral medications, the IV route is the fastest way to deliver fluids and medications throughout the body.[5] For this reason, the IV route is commonly preferred in emergency situations or when a fast onset of action is desirable. In extremely high blood pressure (termed a hypertensive emergency), IV antihypertensives may be given to quickly decrease the blood pressure in a controlled manner to prevent organ damage.[6] In atrial fibrillation, IV amiodarone may be administered to attempt to restore normal heart rhythm.[7] IV medications can also be used for chronic health conditions such as cancer, for which chemotherapy drugs are commonly administered intravenously. In some cases, such as with vancomycin, a loading or bolus dose of medicine is given before beginning a dosing regimen to more quickly increase the concentration of medication in the blood.[8]

The bioavailability of an IV medication is by definition 100%, unlike oral administration where medication may not be fully absorbed, or may be metabolized prior to entering the bloodstream.[4] For some medications, there is virtually zero oral bioavailability. For this reason certain types of medications can only be given intravenously, as there is insufficient uptake by other routes of administration,[9] such is the case of severe dehydration where the patient is required to be treated via IV therapy for a quick recovery.[10] The unpredictability of oral bioavailability in different people is also a reason for a medication to be administered IV, as with furosemide.[11] Oral medications also may be less desirable if a person is nauseous or vomiting, or has severe diarrhea, as these may prevent the medicine from being fully absorbed from the gastrointestinal tract. In these cases, a medication may be given IV only until the patient can tolerate an oral form of the medication. The switch from IV to oral administration is usually performed as soon as viable, as there is generally cost and time savings over IV administration. Whether a medication can be potentially switched to an oral form is sometimes considered when choosing appropriate antibiotic therapy for use in a hospital setting, as a person is unlikely to be discharged if they still require IV therapy.[12]

Some medications, such as aprepitant, are chemically modified to be better suited for IV administration, forming a prodrug such as fosaprepitant. This can be for pharmacokinetic reasons or to delay the effect of the drug until it can be metabolized into the active form.[13]

Blood products

[edit]

A blood product (or blood-based product) is any component of blood which is collected from a donor for use in a blood transfusion.[14] Blood transfusions can be used in massive blood loss due to trauma, or can be used to replace blood lost during surgery. Blood transfusions may also be used to treat a severe anaemia or thrombocytopenia caused by a blood disease. Early blood transfusions consisted of whole blood, but modern medical practice commonly uses only components of the blood, such as packed red blood cells, fresh frozen plasma or cryoprecipitate.[15]

Nutrition

[edit]
This patient of an intensive care unit of a German hospital could not eat due to a prior surgical operation of the abdominal region which was complicated by a severe sepsis. He received antibiotics, parenteral nutrition and pain killers via automated injection employing syringe drivers (background, right).

Parenteral nutrition is the act of providing required nutrients to a person through an intravenous line. This is used in people who are unable to get nutrients normally, by eating and digesting food. A person receiving parenteral nutrition will be given an intravenous solution which may contain salts, dextrose, amino acids, lipids and vitamins. The exact formulation of a parenteral nutrition used will depend on the specific nutritional needs of the person it is being given to. If a person is only receiving nutrition intravenously, it is called total parenteral nutrition (TPN), whereas if a person is only receiving some of their nutrition intravenously it is called partial parenteral nutrition (or supplemental parenteral nutrition).[16]

Imaging

[edit]

Medical imaging relies on being able to clearly distinguish internal parts of the body from each other. One way this is accomplished is through the administration of a contrast agent into a vein.[17] The specific imaging technique being employed will determine the characteristics of an appropriate contrast agent to increase visibility of blood vessels or other features. Common contrast agents are administered into a peripheral vein from which they are distributed throughout the circulation to the imaging site.[18]

Other uses

[edit]

Use in sports

[edit]

IV rehydration was formerly a common technique for athletes.[19] The World Anti-Doping Agency prohibits intravenous injection of more than 100 mL per 12 hours, except under a medical exemption.[19] The United States Anti-Doping Agency notes that, as well as the dangers inherent in IV therapy, "IVs can be used to change blood test results (such as hematocrit where EPO or blood doping is being used), mask urine test results (by dilution) or by administering prohibited substances in a way that will more quickly be cleared from the body in order to beat an anti-doping test".[19] Players suspended after attending "boutique IV clinics" which offer this sort of treatment include footballer Samir Nasri in 2017[20] and swimmer Ryan Lochte in 2018.[21]

Use for hangover treatment

[edit]

In the 1960s, John Myers developed the "Myers' cocktail", a non-prescription IV solution of vitamins and minerals marketed as a hangover cure and general wellness remedy.[22] The first "boutique IV" clinic, offering similar treatments, opened in Tokyo in 2008.[22] These clinics, whose target market was described by Elle as "health nuts who moonlight as heavy drinkers", have been publicized in the 2010s by glamorous celebrity customers.[22] Intravenous therapy is also used in people with acute ethanol toxicity to correct electrolyte and vitamin deficiencies which arise from alcohol consumption.[23]

Others

[edit]

In some countries, non-prescription intravenous glucose is used to improve a person's energy, but is not a part of routine medical care in countries such as the United States where glucose solutions are prescription drugs.[24] Improperly administered intravenous glucose (called "ringer" [citation needed]), such as that which is administered clandestinely in store-front clinics, poses increased risks due to improper technique and oversight.[24] Intravenous access is also sometimes used outside of a medical setting for the self-administration of recreational drugs, such as heroin and fentanyl, cocaine, methamphetamine, DMT, and others.[25]

Intravenous therapy is also used for veterinary patient management.[26]

Types

[edit]

Bolus

[edit]

Some medications can be administered as a bolus dose, which is called an "IV push". A syringe containing the medication is connected to an access port in the primary tubing and the medication is administered through the port.[27] A bolus may be administered rapidly (with a fast depression of the syringe plunger) or may be administered slowly, over the course of a few minutes.[27] The exact administration technique depends on the medication and other factors.[27] In some cases, a bolus of plain IV solution (i.e. without medication added) is administered immediately after the bolus to further force the medicine into the bloodstream. This procedure is termed an "IV flush". Certain medications, such as potassium, are not able to be administered by IV push due to the extremely rapid onset of action and high level of effects.[27]

Infusion

[edit]

An infusion of medication may be used when it is desirable to have a constant blood concentration of a medication over time, such as with some antibiotics including beta-lactams.[28] Continuous infusions, where the next infusion is begun immediately following the completion of the prior, may also be used to limit variation in drug concentration in the blood (i.e. between the peak drug levels and the trough drug levels).[28] They may also be used instead of intermittent bolus injections for the same reason, such as with furosemide.[29] Infusions can also be intermittent, in which case the medication is administered over a period of time, then stopped, and this is later repeated. Intermittent infusion may be used when there are concerns about the stability of medicine in solution for long periods of time (as is common with continuous infusions), or to enable the administration of medicines which would be incompatible if administered at the same time in the same IV line, for example vancomycin.[30]

Failure to properly calculate and administer an infusion can result in adverse effects, termed infusion reactions. For this reason, many medications have a maximum recommended infusion rate, such as vancomycin[30] and many monoclonal antibodies.[31] These infusion reactions can be severe, such as in the case of vancomycin, where the reaction is termed "red man syndrome".[30]

Secondary

[edit]

Any additional medication to be administered intravenously at the same time as an infusion may be connected to the primary tubing; this is termed a secondary IV, or IV piggyback.[27] This prevents the need for multiple IV access lines on the same person. When administering a secondary IV medication, the primary bag is held lower than the secondary bag so that the secondary medication can flow into the primary tubing, rather than fluid from the primary bag flowing into the secondary tubing. The fluid from the primary bag is needed to help flush any remaining medication from the secondary IV from the tubing.[27] If a bolus or secondary infusion is intended for administration in the same line as a primary infusion, the molecular compatibility of the solutions must be considered.[27] Secondary compatibility is generally referred to as "y-site compatibility", named after the shape of the tubing which has a port for bolus administration.[27] Incompatibility of two fluids or medications can arise due to issues of molecular stability, changes in solubility, or degradation of one of the medications.[27]

Methods and equipment

[edit]

Access

[edit]
IV infusion set (not yet in use)
A nurse inserting an 18-gauge IV needle with cannula
A needle for intravenous access should be inserted at an approximately 25-degree angle.

The simplest form of intravenous access is by passing a hollow needle through the skin directly into a vein. A syringe can be connected directly to this needle, which allows for a "bolus" dose to be administered. Alternatively, the needle may be placed and then connected to a length of tubing, allowing for an infusion to be administered.[32]: 344–348  The type and location of venous access (i.e. a central line versus peripheral line, and in which vein the line is placed) can be affected by the potential for some medications to cause peripheral vasoconstriction, which limits circulation to peripheral veins.[33]

A peripheral cannula is the most common intravenous access method utilized in hospitals, pre-hospital care, and outpatient medicine. This may be placed in the arm, commonly either the wrist or the median cubital vein at the elbow. A tourniquet may be used to restrict the venous drainage of the limb and make the vein bulge, making it easier to locate and place a line in a vein. When used, a tourniquet should be removed before injecting medication to prevent extravasation. The part of the catheter that remains outside the skin is called the connecting hub; it can be connected to a syringe or an intravenous infusion line, or capped with a heplock or saline lock, a needleless connection filled with a small amount of heparin or saline solution to prevent clotting, between uses of the catheter. Ported cannulae have an injection port on the top that is often used to administer medicine.[32]: 349–354 

The thickness and size of needles and catheters can be given in Birmingham gauge or French gauge. A Birmingham gauge of 14 is a very large cannula (used in resuscitation settings) and 24-26 is the smallest. The most common sizes are 16-gauge (midsize line used for blood donation and transfusion), 18- and 20-gauge (all-purpose line for infusions and blood draws), and 22-gauge (all-purpose pediatric line). 12- and 14-gauge peripheral lines are capable of delivering large volumes of fluid very fast, accounting for their popularity in emergency medicine. These lines are frequently called "large bores" or "trauma lines".[32]: 188–191, 349 

Peripheral lines

[edit]
An arm board is recommended for immobilizing the extremity for cannulation of the hand, the foot or the antecubital fossa in children.[34]

A peripheral intravenous line is inserted in peripheral veins, such as the veins in the arms, hands, legs and feet. Medication administered in this way travels through the veins to the heart, from where it is distributed to the rest of the body through the circulatory system. The size of the peripheral vein limits the amount and rate of medication which can be administered safely.[35] A peripheral line consists of a short catheter inserted through the skin into a peripheral vein. This is usually in the form of a cannula-over-needle device, in which a flexible plastic cannula comes mounted over a metal trocar. Once the tip of the needle and cannula are placed, the cannula is advanced inside the vein over the trocar to the appropriate position and secured. The trocar is then withdrawn and discarded. Blood samples may also be drawn from the line directly after the initial IV cannula insertion.[32]: 344–348 

Labelled computer-drawn illustration of parts of an inserted non-tunneled central intravenous line
Illustration of a non-tunneled central venous access device
The central line kit (out of its packaging)

Central lines

[edit]

A central line is an access method in which a catheter empties into a larger, more central vein (a vein within the torso), usually the superior vena cava, inferior vena cava or the right atrium of the heart. There are several types of central IV access, categorized based on the route the catheter takes from the outside of the body to the central vein output.[36]: 17–22 

Peripherally inserted central catheter

[edit]

A peripherally inserted central catheter (also called a PICC line) is a type of central IV access which consists of a cannula inserted through a sheath into a peripheral vein and then carefully fed towards the heart, terminating at the superior vena cava or the right atrium. These lines are usually placed in peripheral veins in the arm, and may be placed using the Seldinger technique under ultrasound guidance. An X-ray is used to verify that the end of the cannula is in the right place if fluoroscopy was not used during the insertion. An EKG can also be used in some cases to determine if the end of the cannula is in the correct location.[37]: Ch.1, 5, 6 

Tunneled lines

[edit]
Photograph of an inserted Hickman line, which is a type of tunneled catheter, inserted in the chest.
A Hickman line, a type of tunneled catheter, inserted through the skin at the chest and tunneled to insert into the jugular vein in the throat.

A tunneled line is a type of central access which is inserted under the skin, and then travels a significant distance through surrounding tissue before reaching and penetrating the central vein. Using a tunneled line reduces the risk of infection as compared to other forms of access, as bacteria from the skin surface are not able to travel directly into the vein.[38] These catheters are often made of materials that resist infection and clotting. Types of tunneled central lines include the Hickman line or Broviac catheter. A tunnelled line is an option for long term venous access necessary for hemodialysis in people with poor kidney function. [39]

Implantable ports

[edit]

An implanted port is a central line that does not have an external connector protruding from the skin for administration of medication. Instead, a port consists of a small reservoir covered with silicone rubber which is implanted under the skin, which then covers the reservoir. Medication is administered by injecting medication through the skin and the silicone port cover into the reservoir. When the needle is withdrawn, the reservoir cover reseals itself. A port cover is designed to function for hundreds of needle sticks during its lifetime. Ports may be placed in an arm or in the chest area.[40]

Infusions

[edit]

Equipment used to place and administer an IV line for infusion consists of a bag, usually hanging above the height of the person, and sterile tubing through which the medicine is administered. In a basic "gravity" IV, a bag is simply hung above the height of the person and the solution is pulled via gravity through a tube attached to a needle inserted into a vein. Without extra equipment, it is not possible to precisely control the rate of administration. For this reason, a setup may also incorporate a clamp to regulate flow. Some IV lines may be placed with "Y-sites", devices which enable a secondary solution to be administered through the same line (known as piggybacking). Some systems employ a drip chamber, which prevents air from entering the bloodstream (causing an air embolism), and allows visual estimation of flow rate of the solution.[32]: 316–321, 344–348 

Photograph of a simple, single infusion IV pump
An infusion pump suitable for a single IV line

Alternatively, an infusion pump allows precise control over the flow rate and total amount delivered. A pump is programmed based on the number and size of infusions being administered to ensure all medicine is fully administered without allowing the access line to run dry. Pumps are primarily utilized when a constant flow rate is important, or where changes in rate of administration would have consequences.[32]: 316–321, 344–348 

Techniques

[edit]

To reduce pain associated with the procedure, medical staff may apply a topical local anaesthetic (such as EMLA or Ametop) to the skin of the chosen venipuncture area about 45 minutes beforehand.[32]: 344–348 

If the cannula is not inserted correctly, or the vein is particularly fragile and ruptures, blood may extravasate into the surrounding tissues; this situation is known as a blown vein or "tissuing". Using this cannula to administer medications causes extravasation of the drug, which can lead to edema, causing pain and tissue damage, and even necrosis depending on the medication. The person attempting to obtain the access must find a new access site proximal to the "blown" area to prevent extravasation of medications through the damaged vein. For this reason it is advisable to site the first cannula at the most distal appropriate vein.[32]: 355–359 

Adverse effects

[edit]

Pain

[edit]

Placement of an intravenous line inherently causes pain when the skin is broken and is considered medically invasive. For this reason, when other forms of administration may suffice, intravenous therapy is usually not preferred. This includes the treatment of mild or moderate dehydration with oral rehydration therapy which is an option, as opposed to parenteral rehydration through an IV line.[41][42] Children in emergency departments being treated for dehydration have better outcomes with oral treatment than intravenous therapy due to the pain and complications of an intravenous line.[41] Cold spray may decrease the pain of putting in an IV.[43]

Certain medications also have specific sensations of pain associated with their administration IV. This includes potassium, which when administered IV can cause a burning or painful sensation.[44] The incidence of side effects specific to a medication can be affected by the type of access (peripheral versus central), the rate of administration, or the quantity of drug administered. When medications are administered too rapidly through an IV line, a set of vague symptoms such as redness or rash, fever, and others may occur; this is termed an "infusion reaction" and is prevented by decreasing the rate of administration of the medication. When vancomycin is involved, this is commonly termed "Red Man syndrome" after the rapid flushing which occurs after rapid administration.[45]

Infection and inflammation

[edit]

As placement of an intravenous line requires breaking the skin, there is a risk of infection. Skin-dwelling organisms such as coagulase-negative staphylococcus or Candida albicans may enter through the insertion site around the catheter, or bacteria may be accidentally introduced inside the catheter from contaminated equipment. Infection of an IV access site is usually local, causing easily visible swelling, redness, and fever. However, pathogens may also enter the bloodstream, causing sepsis, which can be sudden and life-threatening. A central IV line poses a higher risk of sepsis, as it can deliver bacteria directly into the central circulation. A line which has been in place for a longer period of time also increases the risk of infection.[32]: 358, 373 

Inflammation of the vein may also occur, called thrombophlebitis or simply phlebitis. This may be caused by infection, the catheter itself, or the specific fluids or medication being given. Repeated instances of phlebitis can cause scar tissue to build up along a vein. A peripheral IV line cannot be left in the vein indefinitely out of concern for the risk of infection and phlebitis, among other potential complications. However, recent studies have found that there is no increased risk of complications in those whose IVs were replaced only when clinically indicated versus those whose IVs were replaced routinely.[46] If placed with proper aseptic technique, it is not recommended to change a peripheral IV line more frequently than every 72–96 hours.[47]

Phlebitis is particularly common in intravenous drug users,[48] and those undergoing chemotherapy,[49] whose veins can become sclerotic and difficult to access over time, sometimes forming a hard, painful "venous cord". The presence of a cord is a cause of discomfort and pain associated with IV therapy, and makes it more difficult for an IV line to be placed as a line cannot be placed in an area with a cord.[50]

Infiltration and extravasation

[edit]

Infiltration occurs when a non-vesicant IV fluid or medication enters the surrounding tissue as opposed to the desired vein. It may occur when the vein itself ruptures, when the vein is damaged during insertion of the intravascular access device, or from increased vein porosity. Infiltration may also occur if the puncture of the vein by the needle becomes the path of least resistance—such as a cannula which has been left inserted, causing the vein to scar. It can also occur upon insertion of an IV line if a tourniquet is not promptly removed. Infiltration is characterized by coolness and pallor to the skin as well as localized swelling or edema. It is treated by removing the intravenous line and elevating the affected limb so the collected fluids drain away. Injections of hyaluronidase around the area can be used to speed the dispersal of the fluid/drug.[51] Infiltration is one of the most common adverse effects of IV therapy[52] and is usually not serious unless the infiltrated fluid is a medication damaging to the surrounding tissue, most commonly a vesicant or chemotherapeutic agent. In such cases, the infiltration is termed extravasation, and may cause necrosis.[53]

Others

[edit]

If the solutions administered are colder than the temperature of the body, induced hypothermia can occur. If the temperature change to the heart is rapid, ventricular fibrillation may result.[54] Furthermore, if a solution which is not balanced in concentration is administered, a person's electrolytes may become imbalanced. In hospitals, regular blood tests may be used to proactively monitor electrolyte levels.[55]

History

[edit]

Discovery and development

[edit]

The first recorded attempt at administering a therapeutic substance via IV injection was in 1492, when Pope Innocent VIII fell ill and was administered blood from healthy individuals.[56] If this occurred, the treatment did not work and resulted in the death of the donors while not healing the pope.[56] This story is disputed by some, who claim that the idea of blood transfusions could not have been considered by the medical professionals at the time, or that a complete description of blood circulation was not published until over 100 years later. The story is attributed to potential errors in translation of documents from the time, as well as potentially an intentional fabrication, whereas others still consider it to be accurate.[57] One of the leading medical history textbooks for medical and nursing students has claimed that the entire story was an anti-semitic fabrication.[58]

In 1656 Sir Christopher Wren and Robert Boyle worked on the subject. As stated by Wren, "I Have Injected Wine and Ale in a liveing Dog into the Mass of Blood by a Veine, in good Quantities, till I have made him extremely drunk, but soon after he Pisseth it out." The dog survived, grew fat, and was later stolen from his owner. Boyle attributed authorship to Wren.[59]

Richard Lower showed it was possible for blood to be transfused from animal to animal and from animal to man intravenously, a xenotransfusion. He worked with Edmund King to transfuse sheep's blood into a man who was mentally ill. Lower was interested in advancing science but also believed the man could be helped, either by the infusion of fresh blood or by the removal of old blood. It was difficult to find people who would agree to be transfused, but an eccentric scholar, Arthur Coga, consented and the procedure was carried out by Lower and King before the Royal Society on 23 November 1667.[60] Transfusion gathered some popularity in France and Italy, but medical and theological debates arose, resulting in transfusion being prohibited in France.

There was virtually no recorded success with any attempts at injection therapy until the 1800s, when in 1831 Thomas Latta studied the use of IV fluid replacements for cholera treatment.[56][61] The first solutions which saw widespread use for IV injections were simple "saline-like solutions", which were followed by experiments with various other liquids, including milk, sugar, honey, and egg yolk.[56] In the 1830s, James Blundell, an English obstetrician, used intravenous administration of blood to treat women bleeding profusely during or after delivery.[56] This predated the understanding of blood type, leading to unpredictable results.

Modern usage

[edit]

Intravenous therapy was expanded by Italian physician Guido Baccelli in the late 1890s[62] and further developed in the 1930s by Samuel Hirschfeld, Harold T. Hyman and Justine Johnstone Wanger[63][64] but was not widely available until the 1950s.[65] There was a time, roughly the 1910s–1920s, when fluid replacement that today would be done intravenously was likelier to be done with a Murphy drip, a rectal infusion; and IV therapy took years to increasingly displace that route. In the 1960s, the concept of providing a person's complete nutritional needs through an IV solution began to be seriously considered. The first parenteral nutrition supplementation consisted of hydrolyzed proteins and dextrose.[56] This was followed in 1975 with the introduction of intravenous fat emulsions and vitamins which were added to form "total parenteral nutrition", or that which includes protein, fat, and carbohydrates.[56]

See also

[edit]

References

[edit]
  1. ^ Noonpradej S, Akaraborworn O (3 August 2020). "Intravenous Fluid of Choice in Major Abdominal Surgery: A Systematic Review". Critical Care Research and Practice. 2020: 1–19. doi:10.1155/2020/2170828. PMC 7421038. PMID 32832150.
  2. ^ a b Martin GS. "An Update on Intravenous Fluids". Medscape. WebMD. Retrieved 25 August 2020.
  3. ^ Fujii T, Udy A, Licari E, Romero L, Bellomo R (June 2019). "Sodium bicarbonate therapy for critically ill patients with metabolic acidosis: A scoping and a systematic review". Journal of Critical Care. 51: 184–191. doi:10.1016/j.jcrc.2019.02.027. PMID 30852347. S2CID 73725286.
  4. ^ a b Flynn E (2007). "Pharmacokinetic Parameters". xPharm: The Comprehensive Pharmacology Reference. Elsevier. pp. 1–3. doi:10.1016/b978-008055232-3.60034-0. ISBN 978-0-08-055232-3.
  5. ^ "What is an IV Vitamin Therapy? A Complete Guide by Nepenthe". Retrieved 2022-09-02.
  6. ^ Peacock WF, Hilleman DE, Levy PD, Rhoney DH, Varon J (July 2012). "A systematic review of nicardipine vs labetalol for the management of hypertensive crises". The American Journal of Emergency Medicine. 30 (6): 981–993. doi:10.1016/j.ajem.2011.06.040. PMID 21908132.
  7. ^ Vardas PE, Kochiadakis GE (September 2003). "Amiodarone for the Restoration of Sinus Rhythm in Patients with Atrial Fibrillation". Cardiac Electrophysiology Review. 7 (3): 297–299. doi:10.1023/B:CEPR.0000012400.34597.00. PMID 14739732.
  8. ^ Álvarez R, López Cortés LE, Molina J, Cisneros JM, Pachón J (May 2016). "Optimizing the Clinical Use of Vancomycin". Antimicrobial Agents and Chemotherapy. 60 (5): 2601–2609. doi:10.1128/AAC.03147-14. PMC 4862470. PMID 26856841. S2CID 9560849.
  9. ^ Doyle GR, McCutcheon JA (13 November 2015). "7.5". Clinical Procedures for Safer Patient Care. Victoria, BC: BCcampus.
  10. ^ "IV Fluids". Cleveland Clinic. Retrieved 2023-09-30.
  11. ^ Boles Ponto LL, Schoenwald RD (1 May 1990). "Furosemide (Frusemide) A Pharmacokinetic/Pharmacodynamic Review (Part I)". Clinical Pharmacokinetics. 18 (5): 381–408. doi:10.2165/00003088-199018050-00004. PMID 2185908. S2CID 32352501.
  12. ^ Wetzstein GA (March 2000). "Intravenous to oral (iv:po) anti-infective conversion therapy". Cancer Control. 7 (2): 170–6. doi:10.1177/107327480000700211. PMID 10783821.
  13. ^ Patel P, Leeder JS, Piquette-Miller M, Dupuis LL (October 2017). "Aprepitant and fosaprepitant drug interactions: a systematic review". British Journal of Clinical Pharmacology. 83 (10): 2148–2162. doi:10.1111/bcp.13322. PMC 5595939. PMID 28470980.
  14. ^ "Blood Transfusion | National Heart, Lung, and Blood Institute (NHLBI)". www.nhlbi.nih.gov. Retrieved 2019-06-16.
  15. ^ Avery P, Morton S, Tucker H, Green L, Weaver A, Davenport R (June 2020). "Whole blood transfusion versus component therapy in adult trauma patients with acute major haemorrhage". Emergency Medicine Journal. 37 (6): 370–378. doi:10.1136/emermed-2019-209040. PMID 32376677. S2CID 218532376.
  16. ^ Halter JB, Ouslander JG, Studenski S, High KP, Asthana S, Supiano MA, Ritchie C (23 December 2016). "Chapter 35". In Edmonson KG, Davis KJ (eds.). Hazzard's geriatric medicine and gerontology (Seventh ed.). New York: McGraw Hill. ISBN 978-0-07-183345-5.
  17. ^ Runge VM, Ai T, Hao D, Hu X (December 2011). "The developmental history of the gadolinium chelates as intravenous contrast media for magnetic resonance". Investigative Radiology. 46 (12): 807–16. doi:10.1097/RLI.0b013e318237913b. PMID 22094366. S2CID 8425664.
  18. ^ Rawson JV, Pelletier AL (1 September 2013). "When to Order a Contrast-Enhanced CT". American Family Physician. 88 (5): 312–6. PMID 24010394.
  19. ^ a b c "IV Infusion: Explanatory Note". U.S. Anti-Doping Agency (USADA). 5 January 2018. Retrieved 24 July 2018.
  20. ^ Press Association (1 August 2018). "Samir Nasri's doping ban extended from six to 18 months after appeal by Uefa". The Guardian. Retrieved 2 August 2018.
  21. ^ Caron E (23 July 2018). "Ryan Lochte suspended 14 months for anti-doping violation". Sports Illustrated. Retrieved 24 July 2018.
  22. ^ a b c Hess A (23 April 2014). "The Party Girl Drip". Elle. Retrieved 24 July 2018.
  23. ^ Flannery AH, Adkins DA, Cook AM (August 2016). "Unpeeling the Evidence for the Banana Bag: Evidence-Based Recommendations for the Management of Alcohol-Associated Vitamin and Electrolyte Deficiencies in the ICU". Critical Care Medicine. 44 (8): 1545–1552. doi:10.1097/CCM.0000000000001659. PMID 27002274. S2CID 22431890.
  24. ^ a b Jiha Ham (March 20, 2015). "A Life Upended After an IV Glucose Treatment Popular Among Asian Immigrants". The New York Times. Retrieved March 21, 2015. Although many doctors warn Asian immigrants in New York that the effects of injecting glucose differ little from drinking sugary water, many Asians, especially of older generations, still use the intravenous solution. In their homelands, it is commonly prescribed by doctors as a method to cure colds, fevers and sometimes an upset stomach.
  25. ^ Han Y, Yan W, Zheng Y, Khan MZ, Yuan K, Lu L (11 November 2019). "The rising crisis of illicit fentanyl use, overdose, and potential therapeutic strategies". Translational Psychiatry. 9 (1): 282. doi:10.1038/s41398-019-0625-0. PMC 6848196. PMID 31712552.
  26. ^ Cooper E, Guillaumin J, Yaxley P, Her J, Young A (2022). Small Animal Fluid Therapy. CABI (Centre for Agriculture and Bioscience International). doi:10.1079/9781789243406.0000. ISBN 978-1-78924-338-3. S2CID 251612116. ISBN 978-1-78924-339-0. ISBN 978-1-78924-340-6.
  27. ^ a b c d e f g h i Kanji S, Lam J, Johanson C, Singh A, Goddard R, Fairbairn J, Lloyd T, Monsour D, Kakal J (September 2010). "Systematic review of physical and chemical compatibility of commonly used medications administered by continuous infusion in intensive care units". Critical Care Medicine. 38 (9): 1890–1898. doi:10.1097/CCM.0b013e3181e8adcc. PMID 20562698. S2CID 205539703.
  28. ^ a b Dhaese S, Heffernan A, Liu D, Abdul-Aziz MH, Stove V, Tam VH, Lipman J, Roberts JA, De Waele JJ (25 July 2020). "Prolonged Versus Intermittent Infusion of β-Lactam Antibiotics: A Systematic Review and Meta-Regression of Bacterial Killing in Preclinical Infection Models". Clinical Pharmacokinetics. 59 (10): 1237–1250. doi:10.1007/s40262-020-00919-6. PMID 32710435. S2CID 220732187.
  29. ^ Chan JS, Kot TK, Ng M, Harky A (November 2019). "Continuous Infusion Versus Intermittent Boluses of Furosemide in Acute Heart Failure: A Systematic Review and Meta-Analysis". Journal of Cardiac Failure. 26 (9): 786–793. doi:10.1016/j.cardfail.2019.11.013. PMID 31730917. S2CID 208063606.
  30. ^ a b c Elbarbry F (June 2018). "Vancomycin Dosing and Monitoring: Critical Evaluation of the Current Practice". European Journal of Drug Metabolism and Pharmacokinetics. 43 (3): 259–268. doi:10.1007/s13318-017-0456-4. PMID 29260505. S2CID 13071392.
  31. ^ Bylsma LC, Dean R, Lowe K, Sangaré L, Alexander DD, Fryzek JP (September 2019). "The incidence of infusion reactions associated with monoclonal antibody drugs targeting the epidermal growth factor receptor in metastatic colorectal cancer patients: A systematic literature review and meta-analysis of patient and study characteristics". Cancer Medicine. 8 (12): 5800–5809. doi:10.1002/cam4.2413. PMC 6745824. PMID 31376243.
  32. ^ a b c d e f g h i Lippincott's nursing procedures (5th ed.). Philadelphia: Lippincott Williams & Wilkins. 2009. ISBN 978-0781786898.
  33. ^ Raehl CL (July 1986). "Endotracheal drug therapy in cardiopulmonary resuscitation". Clinical Pharmacy. 5 (7): 572–9. PMID 3527527.
  34. ^ Roberts JR, Hedges JR (2013). Roberts and Hedges' Clinical Procedures in Emergency Medicine E-Book (6th ed.). Elsevier Health Sciences. p. 349. ISBN 9781455748594.
  35. ^ Rivera AM, Strauss KW, van Zundert A, Mortier E (2005). "The history of peripheral intravenous catheters: how little plastic tubes revolutionized medicine". Acta Anaesthesiologica Belgica. 56 (3): 271–82. PMID 16265830.
  36. ^ Marino PL (2014). "2. Central Venous Access". Marino's the ICU book (Fourth ed.). Philadelphia: LWW. ISBN 978-1451121186.
  37. ^ Sandrucci S, Mussa B, eds. (5 July 2014). Peripherally inserted central venous catheters. Milan: Springer. ISBN 978-88-470-5665-7.
  38. ^ Agarwal AK, Haddad N, Boubes K (November 2019). "Avoiding problems in tunneled dialysis catheter placement". Seminars in Dialysis. 32 (6): 535–540. doi:10.1111/sdi.12845. PMID 31710156. S2CID 207955194.
  39. ^ Roca-Tey R (March 2016). "Permanent Arteriovenous Fistula or Catheter Dialysis for Heart Failure Patients". The Journal of Vascular Access. 17 (1_suppl): S23 – S29. doi:10.5301/jva.5000511. PMID 26951899. S2CID 44524962.
  40. ^ Li G, Zhang Y, Ma H, Zheng J (3 July 2019). "Arm port vs chest port: a systematic review and meta-analysis". Cancer Management and Research. 11: 6099–6112. doi:10.2147/CMAR.S205988. PMC 6613605. PMID 31308748. S2CID 196610436.
  41. ^ a b American College of Emergency Physicians, "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation, American College of Emergency Physicians, archived from the original on March 7, 2014, retrieved January 24, 2014
  42. ^ Hartling L, Bellemare S, Wiebe N, Russell K, Klassen TP, Craig W (July 2006). "Oral versus intravenous rehydration for treating dehydration due to gastroenteritis in children". The Cochrane Database of Systematic Reviews. 2006 (3): CD004390. doi:10.1002/14651858.CD004390.pub2. PMC 6532593. PMID 16856044.
  43. ^ Griffith RJ, Jordan V, Herd D, Reed PW, Dalziel SR (April 2016). "Vapocoolants (cold spray) for pain treatment during intravenous cannulation" (PDF). The Cochrane Database of Systematic Reviews. 2016 (4): CD009484. doi:10.1002/14651858.CD009484.pub2. PMC 8666144. PMID 27113639.
  44. ^ Heng SY, Yap RT, Tie J, McGrouther DA (April 2020). "Peripheral Vein Thrombophlebitis in the Upper Extremity: A Systematic Review of a Frequent and Important Problem". The American Journal of Medicine. 133 (4): 473–484.e3. doi:10.1016/j.amjmed.2019.08.054. PMID 31606488. S2CID 204545798.
  45. ^ Bruniera FR, Ferreira FM, Saviolli LR, Bacci MR, Feder D, da Luz Gonçalves Pedreira M, Sorgini Peterlini MA, Azzalis LA, Campos Junqueira VB, Fonseca FL (February 2015). "The use of vancomycin with its therapeutic and adverse effects: a review". European Review for Medical and Pharmacological Sciences. 19 (4): 694–700. PMID 25753888.
  46. ^ Webster J, Osborne S, Rickard CM, Marsh N (23 January 2019). "Clinically-indicated replacement versus routine replacement of peripheral venous catheters". The Cochrane Database of Systematic Reviews. 1 (1): CD007798. doi:10.1002/14651858.CD007798.pub5. ISSN 1469-493X. PMC 6353131. PMID 30671926.
  47. ^ O'Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, Lipsett PA, Masur H, Mermel LA, Pearson ML, Raad II, Randolph AG, Rupp ME, Saint S (May 2011). "Guidelines for the prevention of intravascular catheter-related infections". Clinical Infectious Diseases. 52 (9): e162-93. doi:10.1093/cid/cir257. PMC 3106269. PMID 21460264.
  48. ^ Jaffe RB (July 1983). "Cardiac and vascular involvement in drug abuse". Seminars in Roentgenology. 18 (3): 207–212. doi:10.1016/0037-198x(83)90024-x. PMID 6137064.
  49. ^ Lv L, Zhang J (May 2020). "The incidence and risk of infusion phlebitis with peripheral intravenous catheters: A meta-analysis". The Journal of Vascular Access. 21 (3): 342–349. doi:10.1177/1129729819877323. PMID 31547791. S2CID 202745746.
  50. ^ Mihala G, Ray-Barruel G, Chopra V, Webster J, Wallis M, Marsh N, McGrail M, Rickard CM (2018). "Phlebitis Signs and Symptoms With Peripheral Intravenous Catheters: Incidence and Correlation Study". Journal of Infusion Nursing. 41 (4): 260–263. doi:10.1097/NAN.0000000000000288. PMID 29958263. S2CID 49613143.
  51. ^ Reynolds PM, MacLaren R, Mueller SW, Fish DN, Kiser TH (June 2014). "Management of extravasation injuries: a focused evaluation of noncytotoxic medications". Pharmacotherapy. 34 (6): 617–32. doi:10.1002/phar.1396. PMID 24420913. S2CID 25278254.
  52. ^ Schwamburger NT, Hancock RH, Chong CH, Hartup GR, Vandewalle KS (2012). "The rate of adverse events during IV conscious sedation". General Dentistry. 60 (5): e341-4. PMID 23032244.
  53. ^ Hadaway L (August 2007). "Infiltration and extravasation". The American Journal of Nursing. 107 (8): 64–72. doi:10.1097/01.NAJ.0000282299.03441.c7. PMID 17667395.
  54. ^ Campbell G, Alderson P, Smith AF, Warttig S (13 April 2015). "Warming of intravenous and irrigation fluids for preventing inadvertent perioperative hypothermia". Cochrane Database of Systematic Reviews. 2015 (4): CD009891. doi:10.1002/14651858.CD009891.pub2. PMC 6769178. PMID 25866139.
  55. ^ Wang W (25 July 2015). "Tolerability of hypertonic injectables". International Journal of Pharmaceutics. 490 (1–2): 308–15. doi:10.1016/j.ijpharm.2015.05.069. PMID 26027488.
  56. ^ a b c d e f g Millam D (January 1996). "The history of intravenous therapy". Journal of Intravenous Nursing. 19 (1): 5–14. PMID 8708844.
  57. ^ Lindeboom GA (1954). "The Story of a Blood Transfusion to a Pope". Journal of the History of Medicine and Allied Sciences. IX (4): 455–459. doi:10.1093/jhmas/IX.4.455. PMID 13212030.
  58. ^ Duffin J (2010). History of medicine: a scandalously short introduction (2nd ed.). Toronto [Ont.]: University of Toronto Press. pp. 198–199. ISBN 9780802098252.
  59. ^ Jorge Dagnino; Wren, Boyle, and the Origins of Intravenous Injections and the Royal Society of London. Anesthesiology 2009; 111:923–924 https://doi.org/10.1097/ALN.0b013e3181b56163
  60. ^ Felts, J. H. (2000). Richard Lower: anatomist and physiologist. Annals of internal medicine, 133(6), 485.
  61. ^ MacGillivray N (2009). "Dr Thomas Latta: the father of intravenous infusion therapy". Journal of Infection Prevention. 10 (Suppl. 1): 3–6. doi:10.1177/1757177409342141.
  62. ^ See, for example, the Nobel Prize Nomination Database: https://www.nobelprize.org/nomination/redirector/?redir=archive/
  63. ^ Stanley A (1995). Mothers and daughters of invention: notes for a revised history of technology. Rutgers University Press. pp. 141–142. ISBN 978-0-8135-2197-8. Retrieved 2011-06-05. Wanger and colleagues had in effect invented the modern I.V.-drip method of drug delivery [...]
  64. ^ Hirschfeld S, Hyman HT, Wanger JJ (February 1931). "Influence of velocity on the response to intravenous injections". Archives of Internal Medicine. 47 (2): 259–287. doi:10.1001/archinte.1931.00140200095007.
  65. ^ Geggel L (3 December 2012). "A Royal Spotlight on a Rare Condition". The New York Times.

Further reading

[edit]
[edit]

 

Frequently Asked Questions

Yes, you can customize Zipdrip's IV therapy sessions to fit your specific dietary or health restrictions. They're flexible and work with you to ensure the treatment meets your individual needs and health goals.

Zipdrip's mobile IV therapy practitioners are highly trained and qualified. They've got certifications in their field, ensuring they meet health and safety standards. So, you're in good hands when you choose their services.

Yes, you can book Zipdrip for group sessions or events. They offer customizable IV therapy experiences to meet the needs of any gathering, ensuring you and your guests receive top-notch care and service.